Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 12.594
1.
Dis Model Mech ; 17(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38616770

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Corpus Striatum , Disease Models, Animal , Dystonia , Interneurons , Parvalbumins , Proto-Oncogene Proteins c-fos , Receptors, Dopamine D2 , Animals , Interneurons/metabolism , Interneurons/drug effects , Parvalbumins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Dystonia/pathology , Dystonia/metabolism , Dystonia/physiopathology , Corpus Striatum/pathology , Corpus Striatum/metabolism , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D1/metabolism , Cerebellum/pathology , Cerebellum/metabolism , Ouabain/pharmacology , Mice, Inbred C57BL , Mice , Male
2.
J Physiol Sci ; 74(1): 23, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561668

Cardiac glycosides, known as inhibitors of Na+,K+-ATPase, have anti-cancer effects such as suppression of cancer cell proliferation and induction of cancer cell death. Here, we examined the signaling pathway elicited by cardiac glycosides in the human hepatocellular carcinoma HepG2 cells and human epidermoid carcinoma KB cells. Three kinds of cardiac glycosides (ouabain, oleandrin, and digoxin) inhibited the cancer cell proliferation and decreased the expression level of thyroid adenoma-associated protein (THADA). Interestingly, the knockdown of THADA inhibited cancer cell proliferation, and the proliferation was significantly rescued by re-expression of THADA in the THADA-knockdown cells. In addition, the THADA-knockdown markedly decreased the expression level of L-type amino acid transporter LAT1. Cardiac glycosides also reduced the LAT1 expression. The LAT1 inhibitor, JPH203, significantly weakened the cancer cell proliferation. These results suggest that the binding of cardiac glycosides to Na+,K+-ATPase negatively regulates the THADA-LAT1 pathway, exerting the anti-proliferative effect in cancer cells.


Cardiac Glycosides , Thyroid Neoplasms , Humans , Cardiac Glycosides/pharmacology , Cardiac Glycosides/metabolism , Glycosides/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/pharmacology , Neoplasm Proteins/metabolism
3.
Sci Rep ; 14(1): 9589, 2024 04 26.
Article En | MEDLINE | ID: mdl-38670979

Lysophosphoglycerides (LPLs) have been reported to accumulate in myocardium and serve as a cause of arrhythmias in acute myocardial ischemia. However, in this study we found that LPLs level in the ventricular myocardium was decreased by the onset of acute myocardial ischemia in vivo in rats. Decreasing of LPLs level in left ventricular myocardium, but not right, was observed within 26 min of left myocardial ischemia, regardless of whether arrhythmias were triggered. Lower LPLs level in the ventricular myocardium was also observed in aconitine-simulated ventricular fibrillation (P < 0.0001) and ouabain-simulated III° atrioventricular block (P < 0.0001). Shot-lasting electric shock, e.g., ≤ 40 s, decreased LPLs level, while long-lasting, e.g., 5 min, increased it (fold change = 2.27, P = 0.0008). LPLs accumulation was observed in long-lasting myocardial ischemia, e.g., 4 h (fold change = 1.20, P = 0.0012), when caspase3 activity was elevated (P = 0.0012), indicating increased cell death, but not coincided with higher frequent arrhythmias. In postmortem human ventricular myocardium, differences of LPLs level in left ventricular myocardium was not observed among coronary artery disease- and other heart diseases-caused sudden death and non-heart disease caused death. LPLs level manifested a remarkable increasing from postmortem 12 h on in rats, thus abolishing the potential for serving as biomarkers of sudden cardiac death. Token together, in this study we found that LPLs in ventricular myocardium were initially decreased by the onset of ischemia, LPLs accumulation do not confer arrhythmogenesis during acute myocardial ischemia. It is necessary to reassess the roles of LPLs in myocardial infarction.


Arrhythmias, Cardiac , Heart Ventricles , Myocardial Ischemia , Myocardium , Animals , Myocardial Ischemia/metabolism , Myocardial Ischemia/pathology , Rats , Male , Heart Ventricles/metabolism , Heart Ventricles/pathology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/etiology , Humans , Myocardium/metabolism , Myocardium/pathology , Ventricular Fibrillation/metabolism , Ventricular Fibrillation/etiology , Ventricular Fibrillation/pathology , Aconitine/analogs & derivatives , Disease Models, Animal , Ouabain/pharmacology , Ouabain/metabolism
4.
Neurosci Res ; 200: 8-19, 2024 Mar.
Article En | MEDLINE | ID: mdl-37926219

Spiral ganglion neurons (SGNs) transmit sound signals received by hair cells to the auditory center to produce hearing. The quantity and function are important for maintaining normal hearing function. Limited by the regenerative capacity, SGNs are unable to regenerate spontaneously after injury. Various neurotrophic factors play an important role in the regeneration process. Neuritin is a neurite growth factor that plays an important role in neural plasticity and nerve injury repair. In this study, we used bioinformatics analysis to show that neuritin was negatively correlated with cochlear damage. Then, we aimed to establish a cochlear spiral ganglion-specific sensorineural deafness model in gerbils using ouabain and determine the effects of exogenous neuritin protein in protecting damaged cochlear SGNs and repairing damaged auditory nerve function. The provides a new research strategy and scientific basis for the prevention and treatment of sensorineural deafness caused by the loss of SGNs. We were discovered that neuritin is expressed throughout the development of the gerbil cochlea, primarily in the SGNs and Corti regions. The expression of neuritin was negatively correlated with the sensorineural deafness induced by ouabain. In vitro and in vivo revealed that neuritin significantly maintained the number and arrangement of SGNs and nerve fibers in the damaged cochlea and effectively protected the high-frequency listening function of gerbils.


Deafness , Hearing Loss, Sensorineural , Animals , Spiral Ganglion/metabolism , Gerbillinae , Ouabain/pharmacology , Cochlea , Neurons , Deafness/chemically induced , Deafness/metabolism , Denervation
5.
Virology ; 589: 109915, 2024 01.
Article En | MEDLINE | ID: mdl-37931588

A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.


Cardiac Glycosides , Coronavirus 229E, Human , Humans , Cardiac Glycosides/pharmacology , Monensin/pharmacology , Ouabain/pharmacology , Digitoxin/pharmacology , Antiviral Agents/pharmacology
6.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article En | MEDLINE | ID: mdl-38069012

Ouabain, a substance originally obtained from plants, is now classified as a hormone because it is produced endogenously in certain animals, including humans. However, its precise effects on the body remain largely unknown. Previous studies have shown that ouabain can influence the phenotype of epithelial cells by affecting the expression of cell-cell molecular components and voltage-gated potassium channels. In this study, we conducted whole-cell clamp assays to determine whether ouabain affects the activity and/or expression of TRPV4 channels. Our findings indicate that ouabain has a statistically significant effect on the density of TRPV4 currents (dITRPV4), with an EC50 of 1.89 nM. Regarding treatment duration, dITRPV4 reaches its peak at around 1 h, followed by a subsequent decline and then a resurgence after 6 h, suggesting a short-term modulatory effect related to on TRPV4 channel activity and a long-term effect related to the promotion of synthesis of new TRPV4 channel units. The enhancement of dITRPV4 induced by ouabain was significantly lower in cells seeded at low density than in cells in a confluent monolayer, indicating that the action of ouabain depends on intercellular contacts. Furthermore, the fact that U73122 and neomycin suppress the effect caused by ouabain in the short term suggests that the short-term induced enhancement of dITRPV4 is due to the depletion of PIP2 stores. In contrast, the fact that the long-term effect is inhibited by PP2, wortmannin, PD, FR18, and IKK16 suggests that cSrc, PI3K, Erk1/2, and NF-kB are among the components included in the signaling pathways.


Ouabain , TRPV Cation Channels , Humans , Animals , Ouabain/pharmacology , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Signal Transduction , Epithelial Cells/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
7.
Mol Biol (Mosk) ; 57(6): 1077-1083, 2023.
Article Ru | MEDLINE | ID: mdl-38062961

Melittin, a peptide from bee venom, was found to be able to interact with many proteins, including calmodulin target proteins and ion-transporting P-type ATPases. It is assumed that melittin mimics a protein module involved in protein-protein interactions within cells. Previously, a Na^(+)/K^(+)-ATPase containing the α1 isoform of the catalytic subunit was found to co-precipitate with a protein with a molecular weight of about 70 κDa that interacts with antibodies against melittin by cross immunoprecipitation. In the presence of a specific Na^(+)/K^(+)-ATPase inhibitor (ouabain), the amount of protein with a molecular weight of 70 κDa interacting with Na^(+)/K^(+)-ATPase increases. In order to identify melittin-like protein from murine kidney homogenate, a fraction of melittin-like proteins with a molecular weight of approximately 70 κDa was obtained using affinity chromatography with immobilized antibodies specific to melittin. By mass spectrometry analysis, the obtained protein fraction was found to contain three molecular chaperones of Hsp70 superfamily: mitochondrial mtHsp70 (mortalin), Hsp73, Grp78 (BiP) of endoplasmic reticulum. These data suggest that chaperones from the HSP-70 superfamily contain a melittin-like module.


Melitten , Sodium-Potassium-Exchanging ATPase , Mice , Animals , Melitten/chemistry , Melitten/metabolism , Melitten/pharmacology , Sodium-Potassium-Exchanging ATPase/chemistry , Molecular Weight , Ouabain/pharmacology , Peptides/metabolism , Molecular Chaperones/metabolism
8.
Cells ; 12(24)2023 12 11.
Article En | MEDLINE | ID: mdl-38132136

Inflamed and infected tissues can display increased local sodium (Na+) levels, which can have various effects on immune cells. In macrophages, high salt (HS) leads to a Na+/Ca2+-exchanger 1 (NCX1)-dependent increase in intracellular Na+ levels. This results in augmented osmoprotective signaling and enhanced proinflammatory activation, such as enhanced expression of type 2 nitric oxide synthase and antimicrobial function. In this study, the role of elevated intracellular Na+ levels in macrophages was investigated. Therefore, the Na+/K+-ATPase (NKA) was pharmacologically inhibited with two cardiac glycosides (CGs), ouabain (OUA) and digoxin (DIG), to raise intracellular Na+ without increasing extracellular Na+ levels. Exposure to HS conditions and treatment with both inhibitors resulted in intracellular Na+ accumulation and subsequent phosphorylation of p38/MAPK. The CGs had different effects on intracellular Ca2+ and K+ compared to HS stimulation. Moreover, the osmoprotective transcription factor nuclear factor of activated T cells 5 (NFAT5) was not upregulated on RNA and protein levels upon OUA and DIG treatment. Accordingly, OUA and DIG did not boost nitric oxide (NO) production and showed heterogeneous effects toward eliminating intracellular bacteria. While HS environments cause hypertonic stress and ionic perturbations, cardiac glycosides only induce the latter. Cotreatment of macrophages with OUA and non-ionic osmolyte mannitol (MAN) partially mimicked the HS-boosted antimicrobial macrophage activity. These findings suggest that intracellular Na+ accumulation and hypertonic stress are required but not sufficient to mimic boosted macrophage function induced by increased extracellular sodium availability.


Anti-Infective Agents , Cardiac Glycosides , Humans , Sodium/metabolism , Cardiac Glycosides/pharmacology , Ouabain/pharmacology , Macrophages/metabolism , Sodium Chloride/pharmacology , Sodium Chloride, Dietary , Caffeine/pharmacology , Anti-Infective Agents/pharmacology , Anti-Infective Agents/metabolism
9.
Am J Physiol Renal Physiol ; 325(6): F857-F869, 2023 12 01.
Article En | MEDLINE | ID: mdl-37823195

Renal cyst progression in autosomal dominant polycystic kidney disease (ADPKD) is highly dependent on agents circulating in blood. We have previously shown, using different in vitro models, that one of these agents is the hormone ouabain. By binding to Na+-K+-ATPase (NKA), ouabain triggers a cascade of signal transduction events that enhance ADPKD cyst progression by stimulating cell proliferation, fluid secretion, and dedifferentiation of the renal tubular epithelial cells. Here, we determined the effects of ouabain in vivo. We show that daily administration of ouabain to Pkd1RC/RC ADPKD mice for 1-5 mo, at physiological levels, augmented kidney cyst area and number compared with saline-injected controls. Also, ouabain favored renal fibrosis; however, renal function was not significantly altered as determined by blood urea nitrogen levels. Ouabain did not have a sex preferential effect, with male and female mice being affected equally. By contrast, ouabain had no significant effect on wild-type mice. In addition, the actions of ouabain on Pkd1RC/RC mice were exacerbated when another mutation that increased the affinity of NKA for ouabain was introduced to the mice (Pkd1RC/RCNKAα1OS/OS mice). Altogether, this work highlights the role of ouabain as a procystogenic factor in the development of ADPKD in vivo, that the ouabain affinity site on NKA is critical for this effect, and that circulating ouabain is an epigenetic factor that worsens the ADPKD phenotype.NEW & NOTEWORTHY This work shows that the hormone ouabain enhances the progression of autosomal dominant polycystic kidney disease (ADPKD) in vivo. Ouabain augments the size and number of renal cysts, the kidney weight to body weight ratio, and kidney fibrosis in an ADPKD mouse model. The Na+-K+-ATPase affinity for ouabain plays a critical role in these effects. In addition, these outcomes are independent of the sex of the mice.


Cysts , Polycystic Kidney, Autosomal Dominant , Male , Female , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Ouabain/pharmacology , Adenosine Triphosphatases , Cysts/metabolism , Hormones/metabolism , Hormones/pharmacology , Kidney/metabolism , TRPP Cation Channels/genetics , TRPP Cation Channels/metabolism , Disease Models, Animal
10.
Cell Commun Signal ; 21(1): 283, 2023 10 12.
Article En | MEDLINE | ID: mdl-37828578

BACKGROUND: Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by an accumulation of immature leukemic myeloblasts initiating from leukemic stem cells (LSCs)-the subpopulation that is also considered the root cause of chemotherapy resistance. Repurposing cardiac glycosides to treat cancers has gained increasing attention and supporting evidence, but how cardiac glycosides effectively target LSCs, e.g., whether it involves cell differentiation, remains largely unexplored. METHODS: Digoxin, a user-designed digitoxigenin-α-L-rhamnoside (D6-MA), and ouabain were tested against various human AML-derived cells with different maturation phenotypes. Herein, we established two study models to specifically determine the effects of cardiac glycosides on LSC death and differentiation-one allowed change in dynamics of LSCs and leukemic progenitor cells (LPCs), while another maintained their undifferentiated status. Regulatory mechanisms underlying cardiac glycoside-induced cytotoxicity were investigated and linked to cell cycle distribution and apoptotic machinery. RESULTS: Primitive AML cells containing CD34+ LSCs/LPCs were very responsive to nanomolar concentrations of cardiac glycosides, with ouabain showing the greatest efficiency. Ouabain preferentially induces caspase-dependent apoptosis in LSCs, independent of its cell differentiation status, as evidenced by (i) the tremendous induction of apoptosis by ouabain in AML cells that acquired less than 15% differentiation and (ii) the higher rate of apoptosis in enriched LSCs than in LPCs. We sorted LSCs and LPCs according to their cell cycle distribution into G0/G1, S, and G2/M cells and revealed that G0/G1 cells in LSCs, which was its major subpopulation, were the top ouabain responders, indicating that the difference in ouabain sensitivity between LSCs and LPCs involved both distinct cell cycle distribution and intrinsic apoptosis regulatory mechanisms. Further, Mcl-1 and c-Myc, which were differentially expressed in LSCs and LPCs, were found to be the key apoptosis mediators that determined ouabain sensitivity in AML cells. Ouabain induces a more rapid loss of Mcl-1 and c-Myc in LSCs than in LPCs via the mechanisms that in part involve an inhibition of Mcl-1 protein synthesis and an induction of c-Myc degradation. CONCLUSIONS: Our data provide new insight for repurposing cardiac glycosides for the treatment of relapsed/refractory AML through targeting LSCs via distinct cell cycle and apoptosis machinery. Video Abstract.


Cardiac Glycosides , Leukemia, Myeloid, Acute , Humans , Cardiac Glycosides/pharmacology , Cardiac Glycosides/metabolism , Cardiac Glycosides/therapeutic use , Ouabain/pharmacology , Ouabain/metabolism , Ouabain/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Leukemia, Myeloid, Acute/pathology , Cell Differentiation , Stem Cells/metabolism , Neoplastic Stem Cells/metabolism , Apoptosis
11.
Planta Med ; 89(15): 1444-1456, 2023 Dec.
Article En | MEDLINE | ID: mdl-37709286

The discovery that Na/K-ATPase acts as a signal transducer led us to investigate the structural diversity of cardiotonic steroids and study their ligand effects. By applying Na/K-ATPase activity assay-guided fractionation, we isolated a total of 20 cardiotonic steroids from Streptocaulon juventas, including an undescribed juventasoside B (10: ) and 19 known cardiotonic steroids. Their structures have been elucidated. Using our platform of purified Na/K-ATPase and an LLC-PK1 cell model, we found that 10: , at a concentration that induces less than 10% Na/K-ATPase inhibition, can stimulate the Na/K-ATPase/Src receptor complex and selectively activate downstream pathways, ultimately altering prostate cancer cell growth. By assessing the ligand effect of the isolated cardiotonic steroids, we found that the regulation of cell viability by the isolated cardiotonic steroids was not associated with their inhibitory potencies against Na/K-ATPase activity but reflected their ligand-binding affinity to the Na/K-ATPase receptor. Based on this discovery, we identified a unique active cardiotonic steroid, digitoxigenin (1: ), and verified that it can protect LLC-PK1 cells from hypoxic injury, implicating its potential use in ischemia/reperfusion injury and inducing collagen synthesis in primary human dermal fibroblast cells, and implicating that compound 2: is the molecular basis of the wound healing activity of S. juventas.


Cardenolides , Cardiac Glycosides , Male , Swine , Animals , Humans , Cardenolides/pharmacology , Ligands , Cardiac Glycosides/chemistry , Sodium-Potassium-Exchanging ATPase/metabolism , Wound Healing , Ouabain/pharmacology
12.
Physiol Rep ; 11(17): e15820, 2023 09.
Article En | MEDLINE | ID: mdl-37667414

Hypertension is a pandemic nowadays. We aimed to investigate whether chronic undernutrition modifies the response to the antihypertensive drug rostafuroxin in juvenile hypertensive rats. Chronic undernutrition was induced in male rats using a multideficient diet known as the Regional Basic Diet (RBD), mimicking alimentary habits in impoverished regions worldwide. Animals were given RBD-or a control/CTRL normal diet for rodents-from weaning to 90 days, and rostafuroxin (1 mg/kg body mass) was orally administered from day 60 onwards. For the last 2 days, the rats were hosted in metabolic cages to measure food/energy, water, Na+ ingestion, and urinary volume. Rostafuroxin increased food/energy/Na+ intake in CTRL and RBD rats but had opposite effects on Na+ balance (intake minus urinary excretion). The drug normalized the decreased plasma Na+ concentration in RBD rats, increased urinary volume in RBD but not in CTRL, and decreased and increased urinary Na+ concentration in the RBD and CTRL groups, respectively. Rostafuroxin decreased the ouabain-sensitive (Na+ +K+ )ATPase and increased the ouabain-resistant Na+ -ATPase from proximal tubule cells in both groups and normalized the systolic blood pressure in RBD without effect in CTRL rats. We conclude that chronic undernutrition modifies the response of blood pressure and metabolic responses to rostafuroxin.


Hypertension , Malnutrition , Male , Rats , Animals , Antihypertensive Agents/pharmacology , Antihypertensive Agents/therapeutic use , Ouabain/pharmacology , Hypertension/drug therapy , Adenosine Triphosphatases
13.
Cells ; 12(15)2023 08 06.
Article En | MEDLINE | ID: mdl-37566090

Na/K-ATPase maintains transmembrane ionic gradients and acts as a signal transducer when bound to endogenous cardiotonic steroids. At subnanomolar concentrations, ouabain induces neuroprotection against calcium overload and apoptosis of neurons during excitotoxic stress. Here, the role of lipid rafts in interactions between Na/K-ATPase, sodium-calcium exchanger (NCX), and N-methy-D-aspartate receptors (NMDARs) was investigated. We analyzed 0.5-1-nanometer ouabain's effects on calcium responses and miniature post-synaptic current (mEPSCs) frequencies of cortical neurons during the action of NMDA in rat primary culture and brain slices. In both objects, ouabain attenuated NMDA-evoked calcium responses and prevented an increase in mEPSC frequency, while the cholesterol extraction by methyl-ß-cyclodextrin prevented the effects. The data support the conclusions that (i) ouabain-induced inhibition of NMDA-elicited calcium response involves both pre- and post-synapse, (ii) the presence of astrocytes in the tripartite synapse is not critical for the ouabain effects, which are found to be similar in cell cultures and brain slices, and (iii) ouabain action requires the integrity of cholesterol-rich membrane microdomains in which the colocalization and functional interaction of NMDAR-transferred calcium influx, calcium extrusion by NCX, and Na/K-ATPase modulation of the exchanger occur. This regulation of the molecules by cardiotonic steroids may influence synaptic transmission, prevent excitotoxic neuronal death, and interfere with the pharmacological actions of neurological medicines.


Calcium , Ouabain , Rats , Animals , Ouabain/pharmacology , Calcium/metabolism , N-Methylaspartate/pharmacology , N-Methylaspartate/metabolism , Neurons/metabolism , Cholesterol/metabolism , Adenosine Triphosphatases/metabolism
14.
J Hypertens ; 41(10): 1554-1564, 2023 10 01.
Article En | MEDLINE | ID: mdl-37432904

OBJECTIVE: Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP. Here, we examined the possibility that EO is involved in the structural and mechanical alterations that occur in MRA from DOCA-salt rats. METHODS: MRA were taken from control, vehicle-treated DOCA-salt or rostafuroxin (1 mg/kg per day, for 3 weeks)-treated DOCA-salt rats. Pressure myography and histology were used to evaluate the mechanics and structure of the MRA, and western blotting to assess protein expression. RESULTS: DOCA-salt MRA exhibited signs of inward hypertrophic remodeling and increased stiffness, with a higher wall:lumen ratio, which were reduced by rostafuroxin treatment. The enhanced type I collagen, TGFß1, pSmad2/3 Ser465/457 /Smad2/3 ratio, CTGF, p-Src Tyr418 , EGFR, c-Raf, ERK1/2 and p38MAPK protein expression in DOCA-salt MRA were all recovered by rostafuroxin. CONCLUSION: A process combining Na + K + -ATPase/cSrc/EGFR/Raf/ERK1/2/p38MAPK activation and a Na + K + -ATPase/cSrc/TGF-1/Smad2/3/CTGF-dependent mechanism explains how EO contributes to small artery inward hypertrophic remodeling and stiffening in DOCA-salt rats. This result supports the significance of EO as a key mediator for end-organ damage in volume-dependent hypertension and the efficacy of rostafuroxin in avoiding remodeling and stiffening of small arteries.


Desoxycorticosterone Acetate , Hypertension , Rats , Animals , Ouabain/pharmacology , Blood Pressure/physiology , Desoxycorticosterone , Hypertension/metabolism , Mesenteric Arteries/metabolism , Acetates , Adenosine Triphosphatases , ErbB Receptors
15.
PLoS One ; 18(6): e0287769, 2023.
Article En | MEDLINE | ID: mdl-37390071

Biliary tract cancer is a deadly disease with limited therapeutic options. Ouabain is a well-known inhibitor of the pumping function of Na+/K+-ATPase, though there is evidence that low concentrations of ouabain lead to a reduction of cell viability of cancer cells independent of its inhibition of the pumping function of the Na+/K+-ATPase. Regarding the impact of ouabain on biliary tract cancer, no data is currently available. Therefore, we aimed for a first-time investigation of ouabain as a potential anti-neoplastic biliary tract cancer agent using comprehensive human biliary tract cancer in vitro models. We found that ouabain has a strong cell line-dependent cytotoxic effect with IC50 levels in the (low) nanomolar-range and that this effect was not associated with the mRNA expression levels of the Na+/K+-ATPase α, ß and fxyd-subunits. Regarding the mode of cytotoxicity, we observed induction of apoptosis in biliary tract cancer cells upon treatment with ouabain. Interestingly, cytotoxic effects of ouabain at sub-saturating (< µM) levels were independent of cellular membrane depolarization and changes in intracellular sodium levels. Furthermore, using a 3D cell culture model, we found that ouabain disturbs spheroid growth and reduces the viability of biliary tract cancer cells within the tumor spheroids. In summary, our data suggest that ouabain possesses anti-biliary tract cancer potential at low µM-concentration in 2D and 3D in vitro biliary tract cancer models and encourage further detailed investigation.


Antineoplastic Agents , Biliary Tract Neoplasms , Humans , Ouabain/pharmacology , Biliary Tract Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Apoptosis , Sodium-Potassium-Exchanging ATPase/genetics
16.
J Affect Disord ; 334: 307-316, 2023 08 01.
Article En | MEDLINE | ID: mdl-37150224

BACKGROUND: Bipolar disorder (BD) is a complex and severe mental disorder that affects 1-3 % of the world population. Studies have suggested the involvement of oxidative stress in the physiopathology of this psychiatry disorder. Folic acid (FA), a vitamin from the B complex, is a nutraceutical that has recently been researched as a possible treatment for BD since folate is reduced in patients with the disorder. The present study aimed to evaluate the effects of lithium (Li) and FA on behavioral changes and oxidative stress parameters in an animal model of mania induced by ouabain (OUA). METHODS: Wistar rats received a single intracerebroventricular (ICV) injection of OUA or artificial cerebrospinal fluid (aCSF). From the day following ICV injection, the rats were treated for seven days with gavage injections of Li (47.5 mg/kg/mL), FA (50 mg/kg/mL), or water (1 mL/kg). On the 7th day after OUA injection, locomotor activity was measured using the open-field test. In addition, the oxidative stress parameters were evaluated in rats' frontal cortex, striatum, and hippocampus. RESULTS: OUA induced mania-like behavior and oxidative stress in rats' brains, but Li could reverse these alterations. FA did not affect behavior parameters; however, it presents an antioxidant effect on the brain structures evaluated. LIMITATIONS: The study was only evaluated male rats and ICV injection is an invasive procedure. CONCLUSION: These results indicate that even though FA has an effect against the oxidative stress induced by OUA, this effect was not strong enough to interfere with behavior parameters.


Antimanic Agents , Ouabain , Male , Rats , Animals , Antimanic Agents/pharmacology , Antimanic Agents/therapeutic use , Ouabain/pharmacology , Mania/drug therapy , Mania/pathology , Rats, Wistar , Folic Acid/pharmacology , Folic Acid/therapeutic use , Disease Models, Animal , Brain , Oxidative Stress , Lithium/pharmacology , Behavior, Animal
17.
Cells ; 12(8)2023 04 07.
Article En | MEDLINE | ID: mdl-37190017

Two α-isoforms of the Na+,K+-ATPase (α1 and α2) are expressed in the cardiovascular system, and it is unclear which isoform is the preferential regulator of contractility. Mice heterozygous for the familial hemiplegic migraine type 2 (FHM2) associated mutation in the α2-isoform (G301R; α2+/G301R mice) have decreased expression of cardiac α2-isoform but elevated expression of the α1-isoform. We aimed to investigate the contribution of the α2-isoform function to the cardiac phenotype of α2+/G301R hearts. We hypothesized that α2+/G301R hearts exhibit greater contractility due to reduced expression of cardiac α2-isoform. Variables for contractility and relaxation of isolated hearts were assessed in the Langendorff system without and in the presence of ouabain (1 µM). Atrial pacing was performed to investigate rate-dependent changes. The α2+/G301R hearts displayed greater contractility than WT hearts during sinus rhythm, which was rate-dependent. The inotropic effect of ouabain was more augmented in α2+/G301R hearts than in WT hearts during sinus rhythm and atrial pacing. In conclusion, cardiac contractility was greater in α2+/G301R hearts than in WT hearts under resting conditions. The inotropic effect of ouabain was rate-independent and enhanced in α2+/G301R hearts, which was associated with increased systolic work.


Atrial Fibrillation , Migraine Disorders , Mice , Animals , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Ouabain/pharmacology , Protein Isoforms/metabolism , Mutation/genetics , Phenotype
18.
PLoS One ; 18(5): e0285185, 2023.
Article En | MEDLINE | ID: mdl-37141334

Recently, we have developed software that allows, using a minimum of required experimental data, to find the characteristics of ion homeostasis and a list of all unidirectional fluxes of monovalent ions through the main pathways in the cell membrane both in a balanced state and during the transient processes. Our approach has been successfully validated in human proliferating lymphoid U937 cells during transient processes after stopping the Na/K pump by ouabain and for staurosporine-induced apoptosis. In present study, we used this approach to find the characteristics of ion homeostasis and the monovalent ion fluxes through the cell membrane of human erythrocytes in a resting state and during the transient processes after stopping the Na/K pump with ouabain and in response to osmotic challenge. Due to their physiological significance, erythrocytes remain the object of numerous studies, both experimental and computational methods. Calculations showed that, under physiological conditions, the K+ fluxes through electrodiffusion channels in the entire erythrocyte ion balance is small compared to the fluxes through the Na/K pump and cation-chloride cotransporters. The proposed computer program well predicts the dynamics of the erythrocyte ion balance disorders after stopping the Na/K pump with ouabain. In full accordance with predictions, transient processes in human erythrocytes are much slower than in proliferating cells such as lymphoid U937 cells. Comparison of real changes in the distribution of monovalent ions under osmotic challenge with the calculated ones indicates a change in the parameters of the ion transport pathways through the plasma membrane of erythrocytes in this case. The proposed approach may be useful in studying the mechanisms of various erythrocyte dysfunctions.


Ouabain , Sodium-Potassium-Exchanging ATPase , Humans , Sodium-Potassium-Exchanging ATPase/metabolism , U937 Cells , Ouabain/pharmacology , Ouabain/metabolism , Cell Membrane/metabolism , Ion Transport , Sodium/metabolism , Erythrocytes/metabolism , Chlorides/metabolism , Potassium/metabolism
19.
Bull Exp Biol Med ; 174(5): 678-680, 2023 Mar.
Article En | MEDLINE | ID: mdl-37046115

The effects of cardiotonic steroids (ouabain and digoxin) on the bone formation were studied using the organotypic tissue culture in combination with confocal microscopy. The expression of α1- and α3-isoforms of Na+,K+-ATPase was detected in cells of the bone tissue of 12-day-old chicken embryos. Ouabain in a concentrations 10-10 M (comparable with its endogenous concentration) can modulate transducer function of Na+,K+-ATPase and control the growth and proliferation bone tissue cells. Unlike ouabain, digoxin is not involved in the regulation of bone tissue growth in a 12-day-old chicken embryo.


Ouabain , Sodium-Potassium-Exchanging ATPase , Animals , Chick Embryo , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Digoxin/pharmacology , Protein Isoforms/metabolism , Sodium , Bone Remodeling
20.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37047417

Glutamate mediates photic entrainment of the central clock in the suprachiasmatic nucleus (SCN) by evoking intracellular Ca2+ signaling mechanisms. However, the detailed mechanisms of glutamate-evoked Ca2+ signals are not entirely clear. Here, we used a ratiometric Ca2+ and Na+ imaging technique to investigate glutamate-evoked Ca2+ responses. The comparison of Ca2+ responses to glutamate (100 µM) and high (20 mM) K+ solution indicated slower Ca2+ clearance, along with rebound Ca2+ suppression for glutamate-evoked Ca2+ transients. Increasing the length of exposure time in glutamate, but not in 20 mM K+, slowed Ca2+ clearance and increased rebound Ca2+ suppression, a result correlated with glutamate-induced Na+ loads. The rebound Ca2+ suppression was abolished by ouabain, monensin, Na+-free solution, or nimodipine, suggesting an origin of activated Na+/K+-ATPase (NKA) by glutamate-induced Na+ loads. Ouabain or Na+-free solution also slowed Ca2+ clearance, apparently by retarding Na+/Ca2+-exchanger (NCX)-mediated Ca2+ extrusion. Together, our results indicated the involvement of glutamate-induced Na+ loads, NKA, and NCX in shaping the Ca2+ response to glutamate. Nevertheless, in the absence of external Na+ (NMDG substituted), Ca2+ clearance was still slower for the Ca2+ response to glutamate than for 20 mM K+, suggesting participation of additional Ca2+ handlers to the slower Ca2+ clearance under this condition.


Glutamic Acid , Ouabain , Rats , Animals , Ouabain/pharmacology , Sodium-Potassium-Exchanging ATPase/metabolism , Sodium-Calcium Exchanger/metabolism , Suprachiasmatic Nucleus/metabolism , Calcium/metabolism
...